Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

4,4'-(Azinodimethylene)dipyridinium bis(tetrafluoroborate) and 4-[(4-pyri-dylmethylene)hydrazonomethyl]pyridinium perchlorate: two different hydrogen-bonding motifs

Mohamed Ghazzali, ${ }^{\text {a* }}$ Vratislav Langer, ${ }^{\text {a }}$ Lars Öhrström ${ }^{\text {a }}$ and Morsy Abu-Youssef ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Alexandria University, PO 426-21321, Alexandria, Egypt Correspondence e-mail: mghazz@chalmers.se

Received 28 March 2007
Accepted 30 March 2007
Online 28 April 2007
In the crystal structures of the title compounds, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4}{ }^{2+}$.$2 \mathrm{BF}_{4}{ }^{-}$, (I), and $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4}{ }^{+} \cdot \mathrm{ClO}_{4}^{-}$, (II), respectively, infinite two- and one-dimensional architectures are built up via N $\mathrm{H} \cdots \mathrm{F}$ [in (I)] and conventional $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ [in (II)] hydrogen bonding. The $\mathrm{N}-\mathrm{N}$ single bond in (I) lies on a crystallographic centre of symmetry; as a result, the two pyridinium rings are parallel. In (II), the pyridinium and pyridyl ring planes are inclined with a dihedral angle of 14.45 (3) ${ }^{\circ}$.

Comment

Neutral 1,2-bis(4-pyridylmethylene)hydrazine has been known as an antitumour precursor (Hirayama et al., 1980) as well as an analytical reagent for the determination of Fe^{2+} concentration in solution (Luque de Castro \& Valcarcel, 1978). Recent interest in this and related molecules stems from their use as linear organic mono- or bidentate bridging ligands in the crystal engineering of multidimensional coordination polymers (Ciurtin et al., 2001; Patra \& Goldberg, 2003; Kennedy et al., 2005; Granifo et al., 2006). The characterization of 1,2-bis(4-pyridylmethylene)hydrazine (ElRayyes \& Katrib, 1983) and its crystal structure (Shanmuga

Sundara Raj et al., 2000; Ciurtin et al., 2001), as well as the crystal structure of 4, 4^{\prime}-(azinodimethylene)dipyridinium bis(perchlorate) (Chen et al., 1997), have been reported. The geometric features of the non-isostructural compounds 4,4'-azinodimethylene)dipyridinium bis(tetrafluoroborate), (I), and 4-[(4-pyridylmethylene)hydrazonomethyl]pyridinium perchlorate, (II), are discussed here.

The $\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$ [symmetry code: (i) $-x,-y+2,-z+2$] and $\mathrm{N} 1=\mathrm{C} 1$ bond distances in (I), and $\mathrm{N} 1 A-\mathrm{N} 1 B, \mathrm{~N} 1 A=\mathrm{C} 1 A$ and $\mathrm{N} 1 B=\mathrm{C} 1 B$ in (II), are longer than those of the diperchlorate salt [1.400 (4) and 1.260 (4) Å; Chen et al., 1997] but agree well with those reported for the 4,4'-(azinodimethylene)dipyridinium chloranilate dichloromethane disolvate [1.411 (6) and 1.278 (5) Å; Kennedy \& Waterson, 2003] (Table 1). Perspective drawings of compounds (I) and (II), together with the atomic numbering schemes, are shown in Figs. 1 and 2, respectively.

The two pyridine rings in (I) are parallel, with an interplanar distance of 0.104 (2) \AA, and form a dihedral angle of 1.21 (9) ${ }^{\circ}$ with the mean plane of the $-\mathrm{CH}=\mathrm{N}-\mathrm{N}=\mathrm{CH}-$ zigzag-like spacer, which exhibits an ideal antiperiplanar conformation with a torsion angle of 180° and the $\mathrm{N}-\mathrm{N}$ bond lying on a crystallographic centre of symmetry. In (II), the molecule has no crystallographic centre of symmetry, the two ring planes are inclined by an angle of 14.45 (3) ${ }^{\circ}$ and the antiperiplanar $-\mathrm{CH}=\mathrm{N}-\mathrm{N}=\mathrm{CH}-$ spacer exhibits a torsion angle of -170.34 (2) ${ }^{\circ}$.

The parallel molecular stacks in (I) are arranged along the b axis (Fig. 3), maintained via $\pi-\pi$ stacking at an interplanar distance of 3.335 (3) \AA and supported by a bifurcated $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{F}$ hydrogen bond building up an extended two-dimensional architecture along the (100) plane and S-like molecular

Figure 1
A perspective drawing of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code (i) and symmetry code used to generate unlabelled atoms: $-x,-y+2,-z+2$.]

Figure 2
A perspective drawing of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
sheets along the c axis. On the first-level graph set, as defined by Bernstein et al. (1995) and Grell et al. (1999), D(2) and $D_{2}^{2}(16)$ finite patterns are formed via hydrogen bonds a and b, respectively (see Table 2 and Fig. 5). On the second-level

Figure 3
The packing pattern of (I), projected along the b axis.

Figure 4
The packing pattern of (II), projected along the a axis.

Figure 5
The hydrogen-bonding pattern of (I) along the a and c axes, with hydrogen bonds shown as dashed lines. For notation, see Table 2.

Figure 6
The hydrogen-bonding chains of (II) along the b axis, with hydrogen bonds shown as dashed lines. For symmetry code, see Table 3.
graph set, $C_{2}^{1}(4)$ and $C_{2}^{2}(17)$ chains and an $R_{6}^{6}(43)$ ring can be recognized.

In (II), no profound $\pi-\pi$ stacking exists. However, the zigzag-like molecular stacks built up along the a-axis direction (Fig. 4) are cemented by a conventional $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}^{\mathrm{iv}}$ hydrogen bond (Table 3 and Fig. 6), giving rise to an infinite onedimensional $C(13)$ chain along the vector [01 $\overline{1}]$. Assignments and graph-set analyses were performed using PLUTO (Motherwell et al., 1999).

Experimental

For the preparation of compound (I), $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}$; Aldrich), $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}$; Aldrich) and pyridine-4-carboxaldehyde (2 mmol ; Aldrich) were stirred under an N_{2} flow in EtOH (95%) at $350-355 \mathrm{~K}$ for 2 h . The resulting solution was allowed to cool, and was then filtered and the filtrate evaporated at room temperature for a few days. Yellow crystals were collected by filtration, washed with MeOH and dried in vacuo.

For the preparation of compound (II), 1,2-bis(4-pyridylmethylene)hydrazine (1 mmol), prepared as described by El-Rayyes \& Katrib (1983), was added to an ethanolic solution of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (1 mmol ; Aldrich). The solution was stirred at $350-355 \mathrm{~K}$ for 1 h . The resulting solution was cooled, filtered and the filtrate evaporated at room temperature for a few days. Red crystals were collected by filtration, washed with MeOH and dried in vacuo.

Compound (I)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{BF}_{4}{ }^{-}$	$V=805.56(8) \AA^{3}$
$M_{r}=385.88$	$Z=2$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=5.1056(3) \AA$	$\mu=0.16 \mathrm{~mm}^{-1}$
$b=16.5856(10) \AA$	$T=153(2) \mathrm{K}$
$c=9.6587(6) \AA$	$0.46 \times 0.26 \times 0.12 \mathrm{~mm}$

$\beta=99.962(1)^{\circ}$

Data collection

Siemens SMART CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.588, T_{\text {max }}=0.981$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.119$
$S=1.00$
2925 reflections

Compound (II)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4}^{+} \cdot \mathrm{ClO}_{4}{ }^{-}$
$M_{r}=310.70$
Orthorhombic, $P_{0} c a 2_{1}$
$a=15.0896$ (6) A
$b=11.5525$ (5) \AA
$c=7.8694$ (3) \AA

Data collection

Siemens SMART CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.795, T_{\text {max }}=0.976$

Refinement

$$
\begin{aligned}
& R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032 \\
& w R\left(F^{2}\right)=0.082 \\
& S=1.00 \\
& 3440 \text { reflections } \\
& \text { 190 parameters } \\
& \text { 1 restraint }
\end{aligned}
$$

Table 1
Comparison of selected bond distances (Å) for (I) and (II).

Bond	Bond distance	Compound
$\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.409(2)$	(I)
$\mathrm{N} 1=\mathrm{C} 1$	$1.276(1)$	(I)
$\mathrm{N} 1 A-\mathrm{N} 1 B$	$1.410(2)$	(II)
$\mathrm{N} 1 A=\mathrm{C} 1 A$	$1.275(2)$	(II)
$\mathrm{N} 1 B=\mathrm{C} 1 B$	$1.273(2)$	(II)
Symmetry code: (i) $-x,-y+2,-z+2$.		

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$) for (I).

Label	$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
a	N5-H5 $\cdots \mathrm{F}^{\text {iii }}$	0.88	2.01	$2.8183(12)$	152
b	N5-H5 $\cdots \mathrm{F}^{2 i}$	0.88	2.50	$3.0320(12)$	119
Symmetry codes: (ii) $x+1, y, z ;$ (iii) $x+1,-y+\frac{3}{2}, z-\frac{1}{2}$					
l					

Symmetry codes: (ii) $x+1, y, z$; (iii) $x+1,-y+\frac{3}{2}, z-\frac{1}{2}$.

Table 3
Hydrogen-bond geometry ($\AA,{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 A-\mathrm{H} 5 A \cdots \mathrm{~N} 5 B^{\text {iv }}$	0.88	1.84	$2.715(2)$	174

Symmetry code: (iv) $x, y-1, z+1$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3115). Services for accessing these data are described at the back of the journal.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brandenburg, K. (2006). DIAMOND. Release 3.1d. Crystal Impact GbR, Bonn, Germany. URL: http://www.crystalimpact.com/diamond.
Bruker (2003). SMART (Version 5.63), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, W., Liu, C.-M., Li, D.-G. \& You, X.-Z. (1997). Acta Cryst. C53, 14991501.

Ciurtin, D. M., Dong, Y.-B., Smith, M. D., Barclay, T. \& zur Loye, H.-C. (2001). Inorg. Chem. 40, 2825-2834.
El-Rayyes, N. R. \& Katrib, A. H. (1983). J. Chem. Eng. Data, 28, 132-134.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Granifo, J., Garland, M. T. \& Baggio, R. (2006). Acta Cryst. C62, m56-m59.
Grell, J., Bernstein, J. \& Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.
Hirayama, T., Watanabe, M., Akazawa, C., Ishigami, M., Fujikawa, F., Kasahara, T., Otsuka, M., Nishida, N. \& Mizuno, D. (1980). Yakugaku Zasshi, 100, 1225-1234. (In Japanese.)
Kennedy, A. R., Brown, K. G., Graham, D., Kirkhouse, J. B., Kittner, M., Major, C., McHugh, C. J., Murdoch, P. \& Smith, W. E. (2005). New J. Chem. 29, 826-832.
Kennedy, A. R. \& Waterson, F. R. N. (2003). Acta Cryst. C59, o613-o615.
Luque de Castro, M. D. \& Valcarcel, M. (1978). Anal. Lett. 11, 1-12.
Motherwell, W. D. S., Shields, G. P. \& Allen, F. H. (1999). Acta Cryst. B55, 1044-1056.
Patra, G. K. \& Goldberg, I. (2003). Cryst. Growth Des. 3, 321-329.
Shanmuga Sundara Raj, S., Fun, H.-K., Zhang, J., Xiong, R.-G. \& You, X.-Z. (2000). Acta Cryst. C56, e274-e275.

Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.

